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1 Abstract

It is proved that for C-a continuity of Bezier curves of degree n, the constraints
required at the join between curves P and @ are:
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2 Proof

A Bezier curve, P of degree n is defined by n + 1 control points, P; and param-
eterised by ¢:

P(t) = f: <”) (1—t)"itip, (1)
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The coeflicients are clearly Binomial coefficients and if we take the bold algebraic
step of identifying P; with ' for a dummy variable zp, this becomes:

P(t) = (1 —t+tap)" 2)

We can differentiate with respect to t consistently in this Algebra, since:

(S A0 = X & (10er) = 50 (850

Then it is easily shown by induction that:
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Since P is thus shown to be infinitely differentiable, the only constraints placed
by C-a continuity are at the joins between Bezier curves. Suppose we have two
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curves of degree n: P and (). Then for C-a continutity we require C-(a-1)
continuity and:

e e
—P(t
gt

By substitution using (3), this reduces to:

Q(t) (4)
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(@p — 1)%c " = (2q — 1) (5)
Thus:

v Z (%) v = E (%) vty ©)
Or:

za: (C;)(—l)ipn—i = (—Uaza: (O.[)(—l)ij (7)
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It is easy to show by induction on « that this condition, combined with the
constraints for C-(a-1) continuity, allows us to express @; in the form:

i
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Where Ty 3 is to be found.

Evaluation of the first few terms and a lookup in the On-Line Encyclopedia Of
Integer Sequences [1] turned up sequence A038207 which appeared very similar.
From this I conjectured:

Ty = (-1 (]) )

The rest of this paper is a proof that this satisfies equation (7).
Substituting (8) into (7) gives:
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Whence:



If we consider the coefficient of P, _,., where r < «, we find

() =3 (),

j=r

So my task is complete if I can prove:
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The left-hand side can be tidied up and the 2" transferred to give:
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The the Maple package EKHAD [2] by D. Zeilberger tells you that if:

Let:

\ def (1 —j)(a+1)

Glo.j) & TP ()

Then:

(a+1)S(e.j) + (@ —r+1)S(a+1,j) = Gla,j+ 1) = G(a, j)
This is easily verified by hand. Then summing over all j,
(@+1)> Sl j)+(@—r+1)> Sa+1,7)=0
J J
since G has compact support (S(«,j) = 0 unless 0 < j < «). Therefore:
@032 (D) (7) =r-a-v X e (T ()
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But since (Z) has compact support, we can restrict j thus:
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I am now ready to prove (14) by induction on «:

Case a = 0:

LHS of (14) =0
RHS of (14) =0

Now suppose (14) holds for a = o’.
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Therefore (14) holds Vo € N 0

We can thus conclude that the conditions for C-« continuity are:
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